Search results for " Structure determination"

showing 10 items of 13 documents

Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides

2018

Abstract The crystal and molecular structures of N′-(2-furylmethylidene)-3-(3-pyridyl)acrylohydrazide and N′-(2-thienylmethylidene)-3-(3-pyridyl)acrylohydrazide are reported, and the influence of the type of the heteroatom on the aromaticity of the aromatic rings is discussed. Both molecules are nearly planar. The geometry of the acrylohydrazide arrangement is comparable to that of homologous compounds. Density functional theory (DFT) calculations were performed in order to analyze the changes in the geometry of the studied compounds in the crystalline state and for the isolated molecule. The most significant changes were observed in the values of the N–N and C–N bond lengths. The harmonic …

0301 basic medicinecrystal structure010405 organic chemistryChemistryacroylhydrazidesaromaticityGeneral ChemistryX-ray structure determination01 natural sciences0104 chemical sciences03 medical and health sciences030104 developmental biologyPolymer chemistryquantum chemical calculationsdensity functional theoryheteroaryl substituentsZeitschrift für Naturforschung B
researchProduct

Analysis of the structural quality of the CASD-NMR 2013 entries

2015

We performed a comprehensive structure validation of both automated and manually generated structures of the 10 targets of the CASD-NMR-2013 effort. We established that automated structure determination protocols are capable of reliably producing structures of comparable accuracy and quality to those generated by a skilled researcher, at least for small, single domain proteins such as the ten targets tested. The most robust results appear to be obtained when NOESY peak lists are used either as the primary input data or to augment chemical shift data without the need to manually filter such lists. A detailed analysis of the long-range NOE restraints generated by the different programs from t…

BiochimieProteinNMR NOE Protein Structure determination Validation Spectroscopy Biochemistry Structural BiologyBiochemistryQualityArticleNMRBlind testingSpectroscopie [électromagnétisme optique acoustique]CASD-NMRValidationSpectroscopie [état condense]Structure determinationSpectroscopyNOE
researchProduct

Mono- and Binuclear Copper(II) and Nickel(II) Complexes with the 3,6-Bis(picolylamino)-1,2,4,5-Tetrazine Ligand

2021

Four new compounds of formulas [Cu(hfac)2(L)] (1), [Ni(hfac)2(L)] (2), [{Cu(hfac)2}2(µ-L)]·2CH3OH (3) and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4) [Hhfac = hexafluoroacetylacetone and L = 3,6-bis(picolylamino)-1,2,4,5-tetrazine] have been prepared and their structures determined by X-ray diffraction on single crystals. Compounds 1 and 2 are isostructural mononuclear complexes where the metal ions [copper(II) (1) and nickel(II) (2)] are six-coordinated in distorted octahedral MN2O4 surroundings which are built by two bidentate hfac ligands plus another bidentate L molecule. This last ligand coordinates to the metal ions through the nitrogen atoms of the picolylamine fragment. Compounds 3 and 4 are cen…

DenticityMaterials science42Pharmaceutical Sciencechemistry.chemical_element5-tetrazinecrystal structure determination010402 general chemistry01 natural sciencesO.ArticleAnalytical ChemistryM.lcsh:QD241-441Julvechemistry.chemical_compoundTetrazinenickelStetsiukN 1lcsh:Organic chemistryA.Drug DiscoveryLloret[CHIM]Chemical SciencesPhysical and Theoretical ChemistryIsostructural1245-tetrazine010405 organic chemistryLigandHexafluoroacetylacetoneOrganic ChemistryMagnetic susceptibility0104 chemical sciencesNickelCrystallographyAvarvarichemistryChemistry (miscellaneous)F.Intramolecular forcecopperMolecular Medicinemagnetic propertiesnitrogen ligandsEl-Ghayoury
researchProduct

Automated electron diffraction tomography - a new tool for nano crystal structure analysis

2011

Automated electron Diffraction Tomography (ADT) comprises an upcoming method for “ab intio” structure analysis of nano crystals. ADT allows fine sampling of the reciprocal space by sequential collection of electron diffraction patterns while tilting a nano crystal in fixed tilt steps around an arbitrary axis. Electron diffraction is collected in nano diffraction mode (NED) with a semi-parallel beam with a diameter down to 50 nm. For crystal tracking micro-probe STEM imaging is used. Full automation of the acquisition procedure allowed optimisation of the electron dose distribution and therefore analysis of highly beam sensitive samples. Cell parameters, space group and reflection intensitie…

DiffractionReflection high-energy electron diffractionChemistrybusiness.industryGeneral ChemistryCondensed Matter Physicsstructure determinationCrystalReciprocal latticeOpticsreciprocal space tomographyElectron diffractionelectron diffraction; reciprocal space tomography; structure determinationelectron diffractionGeneral Materials ScienceDiffraction topographybusinessPowder diffractionElectron backscatter diffraction
researchProduct

Ab Initio Structure Determination of Vaterite by Automated Electron Diffraction

2012

tion that is fundamental for understanding material properties. Still, a number of compounds have eluded such kinds of analysis because they are nanocrystalline, highly disordered, with strong pseudosymmetries or available only in small amounts in polyphasic or polymorphic systems. These materials are crystallographically intractable with conventional Xray or synchrotron radiation diffraction techniques. Single nanoparticles can be visualized by high-resolution transmission electron microscopy (HR-TEM) up to sub�ngstrom resolution, [2] but obtaining 3D information is still a difficult task, especially for highly beam-sensitive materials and crystal structures with long cell parameters. Elec…

DiffractionReflection high-energy electron diffractionmetastable phaseElectron crystallographyChemistryResolution (electron density)Analytical chemistrybiomineralization; calcium carbonate; electron crystallography; metastable phase; structure determinationElectronsGeneral ChemistrybiomineralizationCatalysisNanocrystalline materialstructure determinationAutomationCrystallographyelectron crystallographyX-Ray DiffractionElectron diffractionMicroscopy Electron ScanningNanoparticlescalcium carbonateAntacidsPowder diffractionElectron backscatter diffraction
researchProduct

Structure solution of zeolites by automated electron diffraction tomography - Impact and treatment of preferential orientation

2014

Abstract In this paper the reliability of structure solution of nano-crystalline porous compounds with preferred orientation based on automated electron diffraction tomography (ADT) is discussed. It will be shown that the limitations of the data acquisition geometry can be overcome by completing the missing diffraction data with additional diffraction information. Apart from different ways of sample preparation, data merging with either additional ADT data sets or intensities derived from X-ray powder diffraction comprise an effective way to improve the accuracy of the structure solution.

DiffractionZeoliteOrientation (computer vision)ChemistryGeneral ChemistryCondensed Matter PhysicsElectron diffraction; MOF; Structure determination; ZeoliteComputational physicsCrystallographyData acquisitionElectron diffractionElectron diffractionMechanics of MaterialsGeneral Materials ScienceSample preparationTomographyStructure determinationPowder diffractionElectron backscatter diffractionMOF
researchProduct

Applications of automated diffraction tomography (ADT) on nanocrystalline porous materials

2013

Abstract Many porous materials, both inorganic and hybrid organic–inorganic, can only be synthesized as nanocrystals. X-ray powder diffraction delivers one-dimensional data from the overall sample and is therefore often limited by peak overlap at low or medium resolution and by peak broadening. Thus, structure solution of materials with large unit cells and low symmetry, disorder or pseudosymmetry, or available only in polyphasic systems, turns out to be problematic or even impossible. Electron diffraction allows collecting three-dimensional structure information from nanocrystalline materials, but is traditionally biased by low completeness of the diffraction data, dynamical scattering and…

DiffractionZeoliteReflection high-energy electron diffractionChemistrybusiness.industryGeneral ChemistryElectron diffraction; MOF; Structure determination; ZeoliteCondensed Matter PhysicsNanocrystalline materialDiffraction tomographyElectron diffractionOpticsElectron diffractionMechanics of MaterialsGeneral Materials SciencePorous mediumbusinessStructure determinationPowder diffractionMOFElectron backscatter diffraction
researchProduct

Structural Characterization of Organics Using Manual and Automated Electron Diffraction

2010

In the last decade the importance of transmission electron microscopic studies has become increasingly important with respect to the characterization of organic materials, ranging from small organic molecules to polymers and biological macromolecules. This review will focus on the use of transmission electron microscope to perform electron crystallography experiments, detailing the approaches in acquiring electron crystallographic data. The traditional selected area approach and the recently developed method of automated diffraction tomography (ADT) will be discussed with special attention paid to the handling of electron beam sensitive organic materials.

Materials sciencePolymers and PlasticsRenewable Energy Sustainability and the EnvironmentElectron crystallographyBiomedical EngineeringCrystallographic dataNanotechnologyGeneral ChemistryElectronautomated data acquisition; electron diffraction; simulation methods; structure determinationsimulation methodsautomated data acquisitionstructure determinationElectronic Optical and Magnetic MaterialsCharacterization (materials science)Diffraction tomographyElectron diffractionTransmission electron microscopyMaterials ChemistryEnergy filtered transmission electron microscopyelectron diffractionElectrical and Electronic Engineering
researchProduct

The Protein Structure Context of PolyQ Regions.

2016

Proteins containing glutamine repeats (polyQ) are known to be structurally unstable. Abnormal expansion of polyQ in some proteins exceeding a certain threshold leads to neurodegenerative disease, a symptom of which are protein aggregates. This has led to extensive research of the structure of polyQ stretches. However, the accumulation of contradictory results suggests that protein context might be of importance. Here we aimed to evaluate the structural context of polyQ regions in proteins by analysing the secondary structure of polyQ proteins and their homologs. The results revealed that the secondary structure in polyQ vicinity is predominantly random coil or helix. Importantly, the region…

Models MolecularProtein Conformation alpha-HelicalProtein Structure ComparisonProtein StructureSaccharomyces cerevisiae ProteinsGlutaminelcsh:MedicineNerve Tissue ProteinsSaccharomyces cerevisiaePlant ScienceResearch and Analysis MethodsBiochemistryPlant Roots570 Life sciencesDatabase and Informatics MethodsProtein Structure DatabasesMacromolecular Structure AnalysisHumansProtein Interaction Domains and MotifsAmino AcidsDatabases ProteinProtein Interactionslcsh:ScienceMolecular BiologyMediator ComplexOrganic CompoundsPlant AnatomyAcidic Amino AcidsOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesProteinsRoot StructureChemistryBiological DatabasesProtein-Protein InteractionsPhysical Scienceslcsh:QStructural ProteinsProtein Structure DeterminationPeptidesResearch Article570 BiowissenschaftenPLoS ONE
researchProduct

Synthesis, crystal and molecular-electronic structure, and kinetic investigation of two new sterically hindered isomeric forms of the dimethyl[methyl…

2017

Two new structural isomers – 2,4-dimethyl-5-[methyl(phenylsulfonyl)amino]benzenesulfonyl chloride (1) and 2,4-dimethyl-3-[methyl(phenylsulfonyl)amino]benzenesulfonyl chloride (2) were synthesized by interaction of N-(2,4-dimethylphenyl)-N-methyl-benzenesulfonamide or N-(2,6-dimethylphenyl)-N-methylbenzenesulfonamide with chlorosulfonic acid. Both compounds have been structurally characterized by X-ray single crystal diffraction at 100 K. The crystals of 1 are triclinic: space group View the MathML source, a = 8.1542(2), b = 11.0728(3), c = 11.2680(3) Å, α = 116.557(3), β = 95.155(2), γ = 108.258(2)°, V = 831.97(4) Å3, Z = 2, R = 0.0251 for 2429 reflections; the crystals of 2 are monoclinic:…

Steric effectsSubstitution reaction010405 organic chemistryStereochemistryHydrogen bondOrganic ChemistryTriclinic crystal system010402 general chemistry01 natural sciencesKinetics of substitution reactions in aqueous solution0104 chemical sciencesAnalytical ChemistryInorganic ChemistryCrystallographychemistry.chemical_compoundQuantum-chemical analysischemistryX-ray crystal structure determinationIntramolecular forceBenzenesulfonyl chlorideStructural isomerMoleculeOrtho-effectSterically hindered derivatives of aromatic sulfonic acidsSpectroscopyJournal of Molecular Structure
researchProduct